Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.08.556870

ABSTRACT

Background: The inactivated whole-virion vaccine, CoronaVac, is one of the most widely used coronavirus disease 2019 (COVID-19) vaccines worldwide. There is a paucity of data indicating the durability of the immune response and the impact of immune imprinting induced by CoronaVac upon Omicron breakthrough infection. Methods: In this prospective cohort study, 41 recipients of triple-dose CoronaVac and 14 unvaccinated individuals were recruited. We comprehensively profiled adaptive immune parameters in both groups, including spike-specific immunoglobulin (Ig) G and IgA titers, neutralizing activity, B cells, follicular helper T (Tfh) cells, CD4+ and CD8+ T cells, and their memory subpopulations at 12 months after the third booster dose and at 4 weeks and 20 weeks after Omicron BA.5 infection. Results: Twelve months after the third CoronaVac vaccination, spike-specific antibody and cellular responses were detectable in most vaccinated individuals. BA.5 infection significantly augmented the magnitude, cross-reactivity and durability of serum neutralization activities, Fc-mediated phagocytosis, and nasal spike-specific IgA responses, memory B cells, activated Tfh cells memory CD4+ T cells, and memory CD8+ T cells for both the ancestral strain and Omicron subvariants, compared to unvaccinated individuals. Notably, the increase in BA.5-specific immunity after breakthrough infection was consistently higher than for the ancestral strain, suggesting no evidence of immune imprinting. Immune landscape analyses showed vaccinated individuals have better synchronization of multiple immune components than unvaccinated individuals upon heterologous SARS-CoV-2 infection. Conclusion: Our data provides detailed insight into the protective role of inactivated COVID-19 vaccine in shaping humoral and cellular immune responses to heterologous Omicron infection.


Subject(s)
COVID-19 , Breakthrough Pain
2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1999649

ABSTRACT

Introduction As the first bibliometric analysis of COVID-19 and immune responses, this study will provide a comprehensive overview of the latest research advances. We attempt to summarize the scientific productivity and cooperation across countries and institutions using the bibliometric methodology. Meanwhile, using clustering analysis of keywords, we revealed the evolution of research hotspots and predicted future research focuses, thereby providing valuable information for the follow-up studies. Methods We selected publications on COVID-19 and immune response using our pre-designed search strategy. Web of Science was applied to screen the eligible publications for subsequent bibliometric analyses. GraphPad Prism 8.0, VOSviewer, and CiteSpace were applied to analyze the research trends and compared the contributions of countries, authors, institutions, and journals to the global publications in this field. Results We identified 2,200 publications on COVID-19 and immune response published between December 1, 2019, and April 25, 2022, with a total of 3,154 citations. The United States (611), China (353), and Germany (209) ranked the top three in terms of the number of publications, accounting for 53.3% of the total articles. Among the top 15 institutions publishing articles in this area, four were from France, four were from the United States, and three were from China. The journal Frontiers in Immunology published the most articles (178) related to COVID-19 and immune response. Alessandro Sette (31 publications) from the United States were the most productive and influential scholar in this field, whose publications with the most citation frequency (3,633). Furthermore, the development and evaluation of vaccines might become a hotspot in relevant scope. Conclusions The United States makes the most indispensable contribution in this field in terms of publication numbers, total citations, and H-index. Although publications from China also take the lead regarding quality and quantity, their international cooperation and preclinical research need to be further strengthened. Regarding the citation frequency and the total number of published articles, the latest research progress might be tracked in the top-ranking journals in this field. By analyzing the chronological order of the appearance of retrieved keywords, we speculated that vaccine-related research might be the novel focus in this field.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.03.458951

ABSTRACT

Recently, patients co-infected by two SARS-CoV-2 lineages have been sporadically reported. Concerns are raised because previous studies have demonstrated co-infection may contribute to the recombination of RNA viruses and cause severe clinic symptoms. In this study, we have estimated the compositional lineage(s), tendentiousness, and frequency of co-infection events in population from a large-scale genomic analysis for SARS-CoV-2 patients. SARS-CoV-2 lineage(s) infected in each sample have been recognized from the assignment of within-host site variations into lineage-defined feature variations by introducing a hypergeometric distribution method. Of all the 29,993 samples, 53 (~0.18%) co-infection events have been identified. Apart from 52 co-infections with two SARS-CoV-2 lineages, one sample with co-infections of three SARS-CoV-2 lineages was firstly identified. As expected, the co-infection events mainly happened in the regions where have co-existed more than two dominant SARS-CoV-2 lineages. However, co-infection of two sub-lineages in Delta lineage were detected as well. Our results provide a useful reference framework for the high throughput detecting of SARS-CoV-2 co-infection events in the Next Generation Sequencing (NGS) data. Although low in average rate, the co-infection events showed an increasing tendency with the increased diversity of SARS-CoV-2. And considering the large base of SARS-CoV-2 infections globally, co-infected patients would be a nonnegligible population. Thus, more clinical research is urgently needed on these patients.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.25.20110890

ABSTRACT

To explore whether the expression levels of viral-entry associated genes might contribute to the milder symptoms in children, we analysed the expression of these genes in both children and adults' lung tissues by single cell RNA sequencing (scRNA-seq) and immunohistochemistry (IHC). Both scRNA-seq and IHC analyses showed comparable expression of the key genes for SARS-CoV-2 entry in children and adults, including ACE2, TMPRSS2 and FURIN, suggesting that instead of lower virus intrusion rate, other factors are more likely to be the key reasons for the milder symptoms of SARS-CoV-2 infected children.


Subject(s)
Severe Acute Respiratory Syndrome
6.
Chinese Journal of Laboratory Medicine ; (12): E008-E008, 2020.
Article in Chinese | WPRIM (Western Pacific), WPRIM (Western Pacific) | ID: covidwho-2380

ABSTRACT

As one of the two methods for 2019 novel coronavirus (2019-nCoV), gene sequencing is different from quantitative real-time PCR (RT-PCR) in detection principles. Therefore, gene sequencing has its own pros and cons in clinical application. Currently, metagenomic next-generation sequencing (mNGS) is the most commonly used technology in clinical application. Due to its broad coverage of all types of pathogens, mNGS demonstrates incomparable advantage in rapid identification of novel pathogens such as 2019-nCoV. In addition, it can simultaneously identify other pathogens except 2019-nCoV and mixed infections. On the other hand, however, due to the complexity of mNGS and long detection time, it is unlikely to achieve the purpose of wide-range and rapid diagnosis of 2019 n-CoV. Therefore, mNGS can complement RT-PCR to achieve best clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL